

Rice Consulting Services, Inc.

P.O. Box 891284
Oklahoma City, OK 73189

405-793-7449
405-793-7454 FAX

September 2001 Newsletter

The Role of Regression
Testing in Dirty Systems
by Randy Rice, CQA, CSTE

This article is part of a work in
progress, Testing Dirty Systems, co-
authored with William E. Perry. A dirty
system is one that is undocumented,
patched over by constant maintenance,
and unstructured. This information is
also taken from our new training
course, Integration and Interoperability
Testing.

A type of test case that needs to be
present in testing dirty systems is the
regression test case. It seems that dirty
systems are especially exposed to the
regression risk, which is seen when a
change to a validated piece of software
causes a new defect to occur. Regression
defects are a fact of life in software,
especially software maintenance, which
forces people to test more than just
changes.

The key issue in regression testing is
knowing how many test cases are needed
to test a new release. The answer to this
issue depends on:

The relative risk of the system being
tested

If the potential impact of defects are
minimal, then to test a large number of
cases every time a change is made would
be overkill. However, if property or
safety are at risk, a large number of
regression test cases would be very
appropriate.

The level of system integration

This is a two-edged sword, in that on one

hand highly integrated systems seem to be prone to
regression defects due to the complex nature of many
interfaces. A change in one module could manifest a
defect in another module far downstream in the
processing flow. On the other hand, highly integrated
systems are difficult to regression test because of the
large number of possible test cases required to
adequately cover the integration paths. If we could
predict where the defects might be, we wouldn’t need to
perform regression testing. However, that’s not the case
with most dirty systems.

The scope of the change

This is also a difficult criteria to define exactly. It is
tempting to want to reduce the level of regression testing
because a change might be very small. However,
experience tells us that some major software failures can
be traced back to a singe simple change. Consider the
following examples:

On January 15, 1990, 114 switching computers in the
AT&T telephone network crashed because of a single
coding error. A misplaced “break” command in a C
language program caused local computers to go down
and broadcast “out of service” messages to be broadcast.
The condition lasted for over nine hours in which
switches failed, rebooted, only to fail again when
restarted. The estimated cost of the outage was $60
million dollars and loss of company reputation.
(Reference Globe and Mail, November 12, 1990, Page
B8)

A spacecraft headed toward Venus, the Atlas-Agena, was
blown up after it became unstable at an altitude of 90
miles. The problem was traced back to a missing hyphen
in the flight plan. The cost of the spacecraft was $18
million. (Computer-Related Risks by Peter G. Neumann,
Pg 26)

Of course, these are very visible examples of notable
failures and thankfully, these don’t happen to this extent
every day. The point we are making by presenting them
is that a small defect can have a huge impact. You can
find a listing of many other classics software problems
at:
http://www.softwareqatest.com/qatfaq1.html#FAQ1_3.

http://www.softwareqatest.com/qatfaq1.html#FAQ1_3

The Software Quality Advisor – September 2001

September 2001 Page 2
2001, Rice Consulting Services, Inc.

Boris Beizer has also been quoted as saying that the top
five software problems in his list are all related to unit
defects. They are:

��� The Voyager bug (sent the probe into the sun). �

2. The AT&T bug that took out 1/3 of US
telephones.

3. The DCS bug that took out another 1/3 a few
months later.

4. The Intel Pentium chip bug (it was software, not
hardware).

5. The Ariane V bug.1

In a follow-up letter, Beizer stated that
the Therac 25 defect which was
responsible for the maiming and deaths
of six people by overdosing of radiation
therapy was notorious, but not a unit
defect. You can find a complete
description of that defect in the book,
Fatal Defect by Ivars Peterson.

The resources available to perform
regression testing

These resources include time, environments, people and
tools. There are times when you can see the need to
perform a certain level of regression testing, but are
constrained by the lack of resources. This is a real-world
situation which goes back to management support of
testing. People can only do the job they have the
resources to perform. Regression testing without
automated test tools is so imprecise and laborious it
could well be called “pseudo-regression testing.”

A Risk-Based Process for Regression Testing of
Dirty Systems

The best advice I can give for the regression testing of
dirty systems is to base the extent of testing on relative
risk. If the risk is high, you will want to develop a
repeatable set of test cases that represents the widest
scope of testing possible and perform those tests each
time a change is made to the software. If the risk is low,
you can test with a subset of regression test cases.

The following diagrams illustrate the effect of
segmenting regression test cases by risk. In each diagram
a universe of test cases is defined. However, we are
quick to agree that number of possible test cases
approaches infinity for many applications. The universe

1 Letter to swtest-discuss, 10 June 1997

as shown in the diagrams is a practical “line-of-sight”
view of those test cases known to be needed and
effective.

In Figure 1, the high-risk environment contains all test
cases that are known to exist.

Universe of Test Cases

Case 1

Case 2

Case 3

Case 4

Case 5

Case n

Case 6

Case 7

Case 11

Case 8

Case 12

Case 13

Case 10

Case 14

Case 9

Figure 1 – The High Risk Test Case Universe

In Figure 2, the test cases are segmented by risk. In this
environment, there are some parts of the application that
can be regression tested at lesser degrees than others.

Universe of Test Cases

Case 1

Case 2

Case 3

Case 4

Case 5

Case n

Case 6

Case 7

Case 11

Case 8

Case 12

Case 13

Case 10

Case 14

Case 9
High-risk cases

Low-risk cases
Moderate-risk cases

Figure 2 – Multiple Levels of Risk in the Universe of
Test Cases

http://service.bfast.com/bfast/click?bfmid=2181&sourceid=181174&bfpid=0679740279&bfmtype=book

The Software Quality Advisor – September 2001

September 2001 Page 3
2001, Rice Consulting Services, Inc.

We must be quick to point out that in dirty systems, and
even those are clean, that varying levels of risk can be
seen spread across a function. When this occurs, the
multiple test cases that may be required to test such a
function will also have varying levels of risk. We
mention this because sometimes in testing the high-risk
functions you must also test the low risk functions.

In Figure 3 the effect of varying levels of risk in a
transaction or major function are shown by the linking
together of test cases that are required to test the major
function.

Universe of Test Cases

Case 1

Case 2

Case 3

Case 4

Case 5

Case n

Case 6

Case 7

Case 11

Case 8

Case 12

Case 13

Case 10

Case 14

Case 9
High-risk cases

Low-risk cases
Moderate-risk cases

Figure 3 - Varying Levels of Risk in a Major
Function or Transaction

This is perhaps the most difficult of the regression test
situations because the risk cuts across all levels. In such a
situation, the regression test would be required to include
all of the test cases, regardless of the lower levels of risk
seen in some of the cases.

Common Regression Test Approaches

The following regression test approaches are not
necessarily right or wrong for you. The approach
depends on your risk and the application you are testing.
This is simply a list of some of the more common ways
regression testing is applied.
• Test Everything, Every Time

Rationale: The risk of failure in a particular
application is so high that it outweighs the cost of
massive test efforts.
Benefits: A high level of test coverage is achieved.
Risks: If done manually, the chances are low that
every case is actually being tested, since there is a
high likelihood of human error. In addition, the
burden of performing such an intense test manually
can lead to tester burnout.

• Test a Few Cases Every Time a Change is Made
Rationale: The risk of failure is too low or the
deadlines are too close to justify testing a large
number of cases.
Benefits: If the risk is actually low, the level of
testing matches the level of risk.
Risks: If the risk is higher than estimated, the level
of regression testing may be too low.

• Test Even When a Change is Not Made

Rationale: The risk of failure is high and there are
external factors that are not under the control of
software configuration management that could
impact systematic behavior.
Benefits: The application is undergoing continuous
monitoring.
Risks: Unless automated, this level of testing can be
overwhelming. Sometimes a false sense of security
can be realized since the regression test is only as
complete as the defined test cases.

• Test Critical Cases Every Time a Change is Made

Rationale: The risk of failure is low to moderate
and there is a way to assess relative risk. Testing is
optimized to increase value and decrease
redundancy. This method is seen many times when
test automation is not used, or when the possible
number of regression test cases is large, even for the
use of automated test tools.
Benefits: Testing matches risk. For manual testing,
there is a way to balance the need for regression
testing with the realization that there will always be
a risk of missing the definition or performance of a
test case.
Risks: A test case that is necessary may not be
included in the regression set.

• Test Critical Cases Even When a Change is Not

Made

Rationale: The risk of failure is low to moderate
and there are external factors that are not under the
control of software configuration management that
could impact systematic behavior.
Benefits: The application is undergoing continuous
monitoring.
Risks: Unless automated, this level of testing can be
overwhelming. Sometimes a false sense of security
can be realized since the regression test is only as
complete as the defined test cases. A test case that is
necessary may not be included in the regression set.

The Software Quality Advisor – September 2001

September 2001 Page 4
2001, Rice Consulting Services, Inc.

Regression Testing Approach Checklist

Criteria Yes No
1 Should your application fail, would the negative impact be high?

2 Are changes being made to any part of the system on a frequent basis?

3 Are changes being made to any part of the system outside of the control of your
organization?

4 Is it possible for you to define a set of regression test cases that completely defines all
functionality?

5 Is it possible for you to define a set of regression test cases that completely defines
critical functionality?

The above checklist is subjective in points such as “high
impact” and “on a frequent basis.” This subjectivity is
intentional, since impact and frequency are relative to
each application environment. Therefore, you need what
constitutes “high impact” and “frequent basis” for your
organization and applications.

The purpose of the checklist is to lead you through the
questions that will help you determine the level of
regression testing that is most appropriate for you. For
example, if you answer questions 1, 3 and 4 with a “yes”,
then you could be a candidate for testing every condition
on a regular interval.

The Regression Testing Process

In the above process, the following steps are performed:

Step 1 - Test existing software using test data containing

pre-modified test cases. The results of this test
will be the baseline to compare against.

Step 2 – The software/system is modified.

Step 3 - Modify the test data to contain new test cases to
validate changes.

Step 4 - Test modified software using modified test data.

Step 5 - Compare the post-modified test results with the
pre-modified test results. Any differences should be
identified as potential defects.

Continually Building the Regression Set

As the application continues to undergo maintenance,
new regression test cases will need to be added. These
cases will be derived from cases required to test new
functionality, and from test cases created from the
identification and repair of defects (Figure 5).

Figure 4 – The Regression Testing Process

Figure 5 – Continually Building the Regression Set

Regression Testing - The
Process

1

2 3

4

Software Test Data

Version
1

Version
1

Version
2

Version
2

Pre-modified
test results

Post-modified
test results

5

Regression Testing - The
Process

1

2 3

4

Software Test Data

Version
1

Version
1

Version
2

Version
2

Pre-modified
test results

Post-modified
test results

5

Continually Building the
Regression Set

Regression Set
Version 1

Regression Set
Version 1

Regression Set
Version 2

Regression Set
Version 2

New FunctionsNew Functions

DefectsDefects

Continually Building the
Regression Set

Regression Set
Version 1

Regression Set
Version 1

Regression Set
Version 2

Regression Set
Version 2

New FunctionsNew Functions

DefectsDefects

The Software Quality Advisor – September 2001

September 2001 Page 5
2001, Rice Consulting Services, Inc.

Tips for Performing Regression Testing

• Control the scope of testing.

You only have so much time for testing, so
choose your tests carefully.

• Build a reusable test bed of data.

A reusable test bed of data is essential for
regression testing.

• Use automated tools.

Especially when it comes to on-line regression
testing, automated capture/playback tools are
the only way to achieve exact regression
testing.

• Base the amount of regression testing on

risk.

By its very nature, regression testing is
redundant. You can manage the redundancy by
basing your testing on risk.

• Build a repeatable and defined process for

regression testing.

This adds rigor and consistency to the
regression test.

Summary

In dealing with all of the uncertainty,
complexity and volume of regression test cases,
one of the best things you can do to make
regression testing manageable is to control the
scope of it by carefully defining the essential
cases. Automated test tools can be effective
vehicles for reducing the manual testing burden,
but there is still the need to design test cases. In
fact, regression testing is the perfect application
for automated test tools, as they can perform
identical test actions multiple times and
compare test results with exact precision.
However, regression testing in highly integrated
and unstructured applications can be very
difficult to perform and maintain, even with
automated testing tools. Hopefully, using some
of the concepts and techniques presented in this
article, you can plan and perform regression
testing in a way that is both effective and
efficient.

Book Review
by Randy Rice, CQA, CSTE

Testing Applications on the Web

By Hung Q. Nguyen

Format: Paperback, 416pp.
ISBN: 047139470X
Publisher: Wiley, John & Sons,
Incorporated
Pub. Date: October 2000

This is a good book on web testing
with plenty of details and examples.

When I first read the book, I wished there would have
been more emphasis on process. Although web-based
projects are not known for their use of processes, it
would be nice to start the discussion someplace.
However, after reading the other book reviewed this
month, Automated Web Toolkit, I realized that these two
books compliment each other very well.

Testing Applications on the Web covers the essentials of
web testing and what makes testing web-based
applications different from other technologies. This book
lays a foundation of understanding basic testing
methodology, understanding networking essentials, web
components, and test planning. Then, specific test
practices and techniques are discussed, including user
interface tests, functional tests, database tests, help tests,
installation tests, compatibility tests, load testing, and
web security concerns. Web test tools are also discussed
at an overview level.

What I Liked About This Book

I liked the specific examples, especially in test case
design and load testing. I also liked that there is a “Why
Read This Chapter?” at the beginning of each chapter.

What I Would Have Liked to Have Seen

If this book had a unified process to wrap around all of
the great techniques, I would have rated it as 5 stars.

Scoring
Readability - 5
Breadth of coverage – 5
Depth of discussion - 5
Accuracy - 5
Credibility - 5
Organization - 3
Overall Score – 4.6

http://service.bfast.com/bfast/click?bfmid=2181&sourceid=181174&bfpid=047139470X&bfmtype=book

The Software Quality Advisor – September 2001

September 2001 Page 6
2001, Rice Consulting Services, Inc.

Topics

Welcome to Web Testing.
Web Testing versus Traditional Testing.
METHODOLOGY AND TECHNOLOGY.
Software Testing Basics.
Networking Basics.
Web Application Components.
Test Planning Fundamentals.
Sample Application.
Sample Test Plan.
TESTING PRACTICES.
User Interface Tests.
Functional Tests.
Database Tests.
Help Tests.
Installation Tests.
Configuration and Compatibility Tests.
Web Security Concerns.
Performance, Load, and Stress Tests.
Web Testing Tools.
Finding Additional Information.
Appendices.
Index.

Summary

This book has a lot of good web-based testing techniques
and specific examples. It belongs on every web tester’s
bookshelf.

Reviewer Randy Rice, CQA, CSTE

Automated Web Testing Toolkit

By Diana Stottlemyer

Paperback - 285 pages (2001)
John Wiley & Sons; ISBN: 0471414352

Writing a book on any type of test
automation is certainly a daunting
project, as the topic is constantly
changing, both in terms of the tools
and vendors, and in terms of the
web itself. This book addresses the

framework of software testing on a web project, project
management for web projects, and then the support that
can be accomplished with web-based testing tools.

This book would be a start for people just getting into
testing a web site, but those who have been down the
web testing road for awhile may be disappointed.
Actually, I thought this book was a good compliment to
Hung Nguyen’s book, Testing Applications on the Web.
The reason I make this comment is that Nguyen’s book

has a lot of concrete examples of web-based test cases
but seemed short on the overall process to manage
testing web applications. Automated Web Testing Toolkit
is long on the process side, but seemed short on the
practical examples of how to apply the test tools in
specific test cases.

What I Liked About This Book

To me, the strong point of this book was the emphasis on
processes and sound project management – things we at
RCS seldom see done well on web projects. I also liked
the discussion of risk assessment and its importance to
testing, but I really would have liked to have seen an
example of how to quantify risks on a web-based project.
I found the chapters on testing different platforms and
servers, and on load testing very helpful. I did pick up on
some tools I was not aware of previously and, finally, the
templates and test plan examples were a nice inclusion.

What I Would Have Liked to Have Seen

In a word – details. The chapter on web test tools is less
than 30 pages long and could really use more screen
shots and trade-off information about the various tools
within a category. One big gap was the short treatment of
web-based capture playback tools. In the discussion of
load testing, there was a lot of emphasis on testing the
web server, but little discussion on testing those
transactions all the way into back-end processes.

Scoring

Readability - 5
Breadth of coverage – 3
Depth of discussion - 2
Accuracy - 4
Credibility - 4
Organization - 4
Overall Score – 3.6

Contents

Pt. 1� Managing the Web Testing Process�
Ch. 1� The Web Testing Process�
Ch. 2� Testing Methodology�
Ch. 3� Web Site Management�
Ch. 4� Risk Management�
Pt. 2� Web Testing Tools and Techniques�
Ch. 5� Web Site Testing Tools�
Ch. 6� Preparing the Web Environment for

Testing �
Ch. 7� Testing Languages and Databases�
Ch. 8� Testing on Different Platforms and

Servers �

http://service.bfast.com/bfast/click?bfmid=2181&sourceid=181174&bfpid=0471414352&bfmtype=book

The Software Quality Advisor – September 2001

September 2001 Page 7
2001, Rice Consulting Services, Inc.

Ch. 9 � Web Capacity Testing-Load and Stress � �

Ch. 10 � Running the Web Test�
Ch. 11� Analyzing the Test Process and

Documentation �
Pt. 3� Templates �

Summary

People on web projects need a process and tools to test
effectively. This book is quick read and a high-level
start, but be prepared to do further research on the “how
to” questions.

Reviewer Randy Rice, CQA, CSTE

Frequently Asked Questions
by Randy Rice, CQA, CSTE

Q: I am greatly impressed to see your site. I want
to get information about CMM levels and standards.

A: The place to go to find out this information is the
Software Engineering's Web Site at:
http://www.sei.cmu.edu/cmm/cmms/cmms.html

You can also find some very good articles on the CMM
at
http://www.stsc.hill.af.mil/crosstalk/

Select "Search Crosstalk Issues", then search on CMM
and you will find many hits. One in particular that you
may like is called The Capability Maturity Model: A
Summary - May 99 the URL is
http://www.stsc.hill.af.mil/crosstalk/1999/may/paulk.asp.

Q: I want a thing like complete manual of CMM
standards. Will you please tell me how to get it?

A: The CMM is not a standard, but an assessment
framework. A company can build software anyway they
like as long as the processes are defined, repeatable, etc.
You get a CMM designation based on how you meet the
criteria for process maturity, people maturity, etc. The
ISO standards are very similar. As they apply to
software, the ISO 9000-3 standard for software is fairly
short and contains just basic standards that you would
find in any testing book. Therefore, people have
developed other certifications, such as SPICE

(http://www-sqi.cit.gu.edu.au/spice/).

You can also find many other links at
http://www.tantara.ab.ca/info.htm

Here's where you can find more complete
information about the CMM:

CMM Implementation Guide:
Choreographing Software
Process Improvement
(Book/CD) by Kim Caputo

This book describes the CMM
and how to implement it in an
organization.

CMM in Practice: Processes for
Executing Software Projects at
Infosys by Pankaj Jalote

This book shows how one
company built a project at Level 4
of the CMM - Lots of templates
and examples.

Comparing ISO 9000, Malcolm
Balbridge, and the SEI CMM
for Software: A Reference and
Selection Guide by
Michael O. Tingey

This book compares these
approaches to software quality.

You can get these books from bn.com or
amazon.com.

Rice Consulting Services, Inc.
P.O. Box 891284

Oklahoma City, OK 73189
405-793-7449

405-793-7454 FAX

Coming to Chicago!
October 30 – November 1, 2001

http://www.sei.cmu.edu/cmm/cmms/cmms.html
http://www.stsc.hill.af.mil/crosstalk/
http://www.stsc.hill.af.mil/crosstalk/1999/may/paulk.asp.
http://www-sqi.cit.gu.edu.au/spice/
http://www.tantara.ab.ca/info.htm
http://service.bfast.com/bfast/click?bfmid=2181&sourceid=181174&bfpid=0201616262&bfmtype=book
http://service.bfast.com/bfast/click?bfmid=2181&sourceid=181174&bfpid=0201379384&bfmtype=book
http://service.bfast.com/bfast/click?bfmid=2181&sourceid=181174&bfpid=0133762602&bfmtype=book

The Software Quality Advisor – September 2001

September 2001 Page 8
2001, Rice Consulting Services, Inc.

Q: How does a manager determine
how long User Acceptance Testing
(UAT) should take? Is it possible to
base it on the number of use cases or
business requirements that have been
written? How do I determine how
manual users should be involved with
UAT? Also, are users responsible for
writing UAT scripts to test the
software?

A: As I tell people in our testing
courses, when it comes to measurement
and estimating, actual mileage varies
because of differences in technology,
organization, processes, etc.

However, with that caveat, there are
some guidelines that seem to hold on an
average.

First, you can estimate about one-third to
one-half of the project time going to test-
related activities. Of that amount, we
normally see about 10% of testing
allocated to UAT if adequate unit and
system testing has preceded it.
Otherwise, UAT can take 25% of the
testing time budget.

Yes, it is good practice to base the
estimate in use cases or business
requirements to be tested. For use cases,
you need to determine the number of
process variations. Each of these will be
the basis of a test script. My estimating
guideline is that it takes about 5 times as
long to test a process than to simply
perform it. This is due to extra time
required to observe and document results,
report defects, perhaps repeat the test to
confirm a defect and to re-test the
function once a defect is fixed. Keep in
mind that the 5 times multiplier is just an
average.

Business requirements are a bit trickier,
because you must decompose them into
sub-functions first, and then test cases.
This is basically the same analysis that
happens in developing the use case. Once
the sub-functions have been identified,
the same 5x multiplier can be applied.

Planning time can equal or exceed execution time. In
fact, another guideline I often use is one-third of test time
for test planning, one-third for test execution, and one-
third for test evaluation and reporting. This can be seen
by test phase for by testing as a whole.

How many users to have involved depends on the size of
the project and how many people the test leader can
reasonably manage. In my experience, a team of 12 full-
time user testers to test an enterprise system is about the
most one leader can keep track of. If the system size
justifies more resources, then you will want to divide and
conquer by forming multiple teams. You will need to
look at skill levels both with the business and with the
technology to estimate the number of testers. If you have
a bunch of people that are struggling with the system,
progress will be slow. One way to help judge this is by
having one or two users as part of a system test team.
Another way is to sample some of the users to have them
perform some of the test scripts for about an hour before
the UAT test team is formed.

My personal opinion is that the users should own the
UAT. That means they are responsible for creating the
high-level test plan, the UAT acceptance criteria,
designing and writing the tests to be performed, perhaps
creating test data, and evaluating test results. Most UAT
teams need assistance from developers and testers to
keep the process on track, and that's fine, as long as the
users keep ownership of the test. Users must be prepared
to hold the line, if necessary, when they see functions
that simply do not support the business. A classic
situation is where the development team tries to sell the
users on workarounds instead of fixing the process.

One final word about UAT is that you can leverage a lot
of the effort and save a lot of grief by involving users
early in the development or purchase process in reviews,
walkthroughs, etc. I know this is easier said than done,
but I always tell people that UAT is one of the most
necessary kinds of testing, done at the worst possible
time.

Q: Can you help me out on the testing front? We
are now in bug fixing mode for a client server
application. What should my testing philosophy be?

A: This is a very involved question, but here is my
short answer.

I know you are past this stage, but testing starts as the
software is being written. Each developer needs to test
his/her own code functionally (externally) and
structurally (internally). Then, as the entire application
starts to come together you can test it as a system.

The Software Quality Advisor – September 2001

September 2001 Page 9
2001, Rice Consulting Services, Inc.

In fix and debug mode, you need to pay attention to two
things:

1) that the changes work correctly (functional tests), and

2) that the changes do not break things that used to work
(regression tests).

This requires a set of test cases that includes tests for the
bug fixes and tests that should be performed each time
the software is changed. If you are getting a new build
everyday, this can be overwhelming. Test tools can help,
but only to the extent that you know what to test and
have a good process in place for testing.

Metrics and Measurements
by Carl Chandler

Metrics and measurements are very important in the
maturity of your process because they will allow you to
monitor your progress and continually improve. To look
at it in another way, process maturity is much like taking
a trip. You must know where you are now, where you
want to be, have a plan for how to get there, and a way to
measure your progress.

That is where metrics and measurements come in. First,
lets take a look at terminology:

Measurement – The extent, dimensions, capacity, etc. of
anything, esp. as determined by a standard.

Examples: Mileage, Function points, Number of
Defects

Metrics – A measurement per another measurement.

Examples: Miles per hour, Defects
per function point

Two valuable measurements are time,
and defects.

Time
• for future estimating

Defects
• for determining effectiveness of

testing
• for improving the development and

testing processes

Combined they are valuable test metrics

Some examples of simple, yet effective
metrics from our course Becoming an
Effective Test Team Leader include:

Time:
- Time per test case
- Time per test script
- Time per unit test
- Time per system test

Sizing:
- Function points
- Lines of code

Defects:
- Numbers of defects
- Defects per sizing measure
- Defects per phase of testing
- Defect origin
- Defect removal efficiency

We teach in our course that the most
valuable test metrics you can capture and
track is defect removal efficiency. This
metric tells how efficient your testing
process is by dividing the number of
defects you find vs. the number of
defects found in the product during its
defined operational life.

Defect Removal Efficiency =

Number of defects found in producer testing
Number of defects during the life of the product

For example, if you find 90 defects during inspections,
unit testing, system testing, and user acceptance testing –
then your customer finds 10 more defects in the next
year, your defects removal efficiency is 90%.

The Software Quality Advisor – September 2001

September 2001 Page 10
2001, Rice Consulting Services, Inc.

Rice Consulting Services’
Consulting Offerings:

Testing Assessments

Rice Consulting Services’ testing
assessment is a quick and effective way
for an organization to determine where
they are in terms of software testing
maturity. The assessment looks at three
areas that are critical to testing:

• Test organization - Who performs
testing, what levels of experience are
present, and when testing is performed in
the development/maintenance life cycle.

• Test process maturity - How well-
defined, well-deployed, and repeatable
the test process is, and whether it
incorporates good testing management,
practices, tools, and techniques.

• Readiness - An assessment of the
organization's readiness to improve the
testing process. This involves an
assessment of the staff's testing
awareness, testing skills, and motivation
to change current practices.
The deliverable is a report detailing the
assessment's findings, a recommended
quality improvement strategy, and a plan
for addressing the improvement needs
identified. If the assessment uncovers the
need for in-house skills training and
consulting, we will include proposed
training and consulting plans in the
report. The report is typically about 15
pages in length.

Rice Consulting Services’
Course Offerings:

If you would like to learn more about the
information covered in Carl’s article we
at Rice Consulting Services, Inc. offer an
excellent course that will enhance your
company’s software quality process.

Building an Effective QA and Testing Process for
Ongoing Validation
– 2 days

This course is designed to teach participants how to
design and implement processes for quality assurance
and quality control. The benefit from these processes is
the continued quality of existing systems during ongoing
operations and maintenance.

This session is appropriate for software developers and
managers, quality assurance and testing personnel, and
systems support professionals.

The workshop contains two team-based exercises which
focus on having the participants write processes for
ongoing testing and change control using their own
organization’s unique attributes.

Interoperability and Integration Testing
– 2 days, Intermediate

This course is designed to present strategies and
techniques for testing within a framework of diverse
technologies and applications. It is assumed that the
attendees will have a working knowledge of testing and
test terminology. Attendees will learn how to plan,
conduct and evaluate tests in diverse technology
environments, especially when the applications in those
environments interact together. The testing of
Commercial Off-the-shelf Software (COTS) will be
discussed, along with the role of regression testing,
configuration management, automated test tools and
ongoing validation in diverse technical environments.
Attendees will leave this course with a solid foundation
for testing in situations which are very diverse and
dynamic.
Attendees will learn

• The basic issues and risk of integration and
interoperability testing

• The deeper issues of performing a risk
assessment

• Processes for integration and interoperability
testing and configuration management in
diverse environments

• How to leverage test tools in diverse
environments

• The process for performing regression testing in
diverse environments

• How to build and manage a test environment
that starts to simulate the operational
environment

• How to measure Return on Investment (ROI) in
a Commercial Off-the-shelf Software (COTS)
environment

The Software Quality Advisor – September 2001

September 2001 Page 11
2001, Rice Consulting Services, Inc.

• The impact of various lifecycle models on
integration and interoperability testing

• How to keep an application in a diverse
environment in a validated state

Becoming an Effective Test Team Leader
2 days

This two-day session is designed for test leaders and test
managers, people who expect to be in a test leadership
role, or people who lead other test managers and test
leaders. The main objective of this session is to teach you
how to be the very best test manager and leader. This
course also answers the question, "What does it mean to
be the best?" There are many people functioning as test
managers, but how many are really leading the team? In
leading a test team, you must not only understand the
basics of software testing, but you must also understand
your own organizational culture. Once you understand
your organizational culture, you might find that testers
have a less than positive image. This session will discuss
how to transform the image of testers from one of police
to one of team members.

You will learn the terminology, process, and challenges
of testing in the real world. Team-based exercises
reinforce the concepts of facilitating team activities and
performing leadership activities.

As a result of attending this seminar, you should have a
good working knowledge of software testing and what it
takes to design and conduct an effective test of software,
regardless of the technology. �

Becoming an Effective Test Team Leader will help you
become more comfortable and confident in leading the
testing effort in your organization. You will emerge from
this two-day session knowing how to develop test cases
and test plans. You will also leave with a knowledge of
how tools can help you perform testing.

Sometimes people feel intimidated by the technical
aspects of software testing and lack the confidence they
need to be credible test leaders in their organization.
Learn the issues and processes for effectively testing
software by attending this hands-on course.

For more information on this course or one of
our many other offerings please contact Carl

Chandler at
(405) 414-6759

Rice Consulting Services, Inc.

P.O. Box 891284
Oklahoma City, OK 73189

405-793-7449
405-793-7454 FAX

To our friends in New York City, Washington
D.C. and Pennsylvania - You stood by us in
Oklahoma City during our time of need and we
stand by you at this time. We are praying for
you daily. God bless America.

Note from Randy –

This is a time where we as Americans are faced with
some great challenges. I received this letter by one of
our state representatives in e-mail the other day. I
don’t know this gentleman’s political affiliation, but
when I read it, I said “Amen.” We at RCS are
grieving with those who have lost loved ones in this
attack on America. We also have all too clear in our
memories when we had to deal with the grief of 168 of
our friends and neighbors in the bombing of the
Federal Building in Oklahoma City. The thing that
kept us going then and will keep us going in this time
is to tighten our bootstraps and manage to do our
jobs. All of this is not meant to be a political
statement, but rather an encouragement to stay
strong. One of our main missions at RCS is to help
you do your job better. So, with these thoughts, I
respectfully share this letter with you from Dave
Herbert.

Randy Rice, 9/19/2001
America needs to toughen up, and do it now. This is
going to be a long drawn out action against these
terrorists. The likelihood of similar terrorist attacks is
greater now than ever before. We must quit cowering in
our corners, and wringing our hands. We need to suck it
up, and make sure we don’t kill our own economy by
hiding and hording. Break out the flags, stick out your
chest, and show the American spirit can’t be broken.
This will not be a war of sacrifice like WWII. We don’t
need to save our metal cans and conserve on spending.
This is an economic war. The more we conserve the
more they win. The idea of the terrorists is to bring
down the American economy, thereby throwing the
world economy into a tailspin. We need to go about our
business as usual, and show these terrorists our true
colors. Roosevelt was right when he said. “The only
thing we have to fear is fear itself”. In the midst of all

The Software Quality Advisor – September 2001

September 2001 Page 12
2001, Rice Consulting Services, Inc.

this death and destruction, we should
remember the strength of the British
during the bombings by the nazi’s in the
Second World War. This terrorist war is
a war that has been going on for years,
and we have looked the other way for far
too long. We should never forget the
lost Americans, and the grief of the
families, but we cannot afford to let them
see us sweat. �

The best thing we can do is to continue
to fuel our economy. Buy something.
Keep the cash flowing in this country.
An economic war is the toughest kind of
war, because it goes against all theories
of wartime. These terrorists know fear
stops spending. Use your tax refund to
purchase something, or send it back to
the president, and tell him to use in the
war effort. If you want to bring these
terrorists to their knees, you must
increase your productivity, and do it with
a smile on your face knowing you are
striking a blow for America. The terrible
sacrifice of human lives should not be
forgotten, but remembered everyday, and
honored with our sweat, and
productivity. Whatever your job is, it is
essential to our economy, and at all costs
we must keep our economy strong. Go
to work for America. Work as if you
were in a defense plant making weapons
to fight our enemy. If you are a car
salesperson, sell more cars. If you are a
ditch digger, dig better and faster. If you
sell clothing, turn on the charm and sell
more. If your job has a quota, raise it. If
you are a construction worker, work
harder and faster. The fuel we need to
win this war is not jet fuel, but economic
fuel. It is vital that we heat up our
economy. Wear a flag pin, and fly Old
Glory from your home and office. Work
for America, and the American way.
The American worker is the best and
most productive worker in the world, and
now is the time to do what we do best.
God Bless America!

Dave Herbert
Okla. State Senate #42

Links…

Expect – A Tool for Regression Testing Interactions

http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/e
xpect/

Managing Object-Oriented Integration and
Regression Testing – Without Being Drowned

http://www.informatik.fernuni-
hagen.de/import/pi3/publikationen/abstracts/EuroSTAR9
8.pdf

Regression Testing article

http://sern.ucalgary.ca/~sdyck/courses/seng621/regressio
n.html#Regression%20Procedure

A PowerPoint Slide Show on Software Testing –
Great for self-study

http://sern.ucalgary.ca/~dsloane/testing3/sld001.htm

Mining System Tests to Aid Software Maintenance

http://xsuds.argreenhouse.com/papers/ieee.html

Notable Quotes…

Yesterday I was a dog. Today I'm a dog. Tomorrow I'll
probably still be a dog. Sigh! There's so little hope for
advancement.
- Charles M. Schulz, (Snoopy)

The difference between literature and journalism is that
journalism is unreadable and literature is not read.
- Oscar Wilde (1854 - 1900)

Personally I'm always ready to learn, although I do not
always like being taught.
- Sir Winston Churchill (1874 - 1965)

For lack of guidance a nation falls, but many advisers
make victory sure.
- The Bible - Proverbs 11:14

Rice Consulting Services, Inc.
P.O. Box 891284

Oklahoma City, OK 73189
405-793-7449

405-793-7454 FAX

http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/expect/
http://www.informatik.fernuni-hagen.de/import/pi3/publikationen/abstracts/EuroSTAR98.pdf
http://sern.ucalgary.ca/~sdyck/courses/seng621/regression.html#Regression%20Procedure
http://sern.ucalgary.ca/~dsloane/testing3/sld001.htm
http://xsuds.argreenhouse.com/papers/ieee.html

October 2001 Issue:

• Foundations of User Acceptance Testing
by Randy Rice, CQA, CSTE

• Walkthroughs, Reviews and Inspections

by Carl Chandler

Coming to Chicago!
October 30 – November 1, 2001

Rice Consulting Services, Inc., a world
recognized leader in Quality and Testing Training.
is teaming with

Process Management Group, Ltd., the
Midwest's Premier Provider of Software Quality and Software
Testing Services (www.pmgltd.com)
To present to you a Three-day course in User-Oriented
Practices for Delivering Quality Software
Log on to http://www.riceconsulting.com/chicago2001.htm to
learn more about the course and to register.
Look for early-bird incentives!

This certificate worth _____ CPE credits* towards Certified Software Test Engineer
Continuing Professional Education through the Quality Assurance Institute.

*Category E - Self-Study Courses Activities designed to improve your proficiency in CSTE skill areas as defined in the Common Body of Knowledge may
qualify for CPE credit up to a maximum of 20 credits per year. Qualifying activities include: Professional memberships that offer self-study education
regarding quality assurance within information technology. It’s not the membership that earns the credit, but the study materials provided by the
membership.

To redeem complete the following information and submit to the Quality Assurance Institute at the
time of reporting CPE credits.

Name: ___

CSTE/CQA Certification Number: _______________________
 (circle one)

Email Address: ___

Credits available to members of The Software Quality Advisor only. To become a member of The Software
Quality Advisor sign-up at http://www.riceconsulting.com/SQAdvisornew.htm

Rice Consulting Services, Inc.
P.O. Box 891284

Oklahoma City, OK 73189
(405) 793-7449 / (405) 793-7454 Fax

e-mail rcs@telepath.com
http://www.riceconsulting.com

www.pgmltd.com
www.riceconsulting.com/chicago2001.htm
www.riceconsulting.com/SQAdvisor.htm
mailto:rcs@telepath.com
www.riceconsulting.com

