
When teaching people how to im-
prove their testing and development
processes, I often advise them to
“start a bug collection.” This reminds
me of when I was in grade school
and I would spend hours looking for
insects around our home for science
assignments. It seemed that the com-
mon bugs were so easy to find they
were unimpressive – both to my
friends and my teachers. However,
when I did manage to find those elu-
sive unusual specimens, usually big
with strange shapes and colors, that
was cause for celebration.

In those days, I wasn’t trying to im-
prove a process. I was just trying to
get a good grade. In testing, I still
celebrate the discovery of the un-
usual and elusive bugs but for a dif-
ferent reason. Each new type of bug
or defect I find as a tester indicates a
new area of process improvement. If
I view testing as a net that catches
defects, each new type of defect indi-
cates where the net needs to be
strengthened or mended.

The Nature of Defects

Defects are serious. They can
cause everything from inconven-
ience (MS Word crashing in the
middle of an article) to death, as
in lethal doses of radiation. I pre-
fer to use the word “defect” as
opposed to “bug” because “bug”
may convey a more causal mean-
ing than is appropriate. Plus, I try
not to propagate loose terminol-
ogy (like using the term “QA”
when “QC” is the actual function
performed). In this article, I use
the term “bug” to keep with the
idea of a “bug collection,” but I
also use the term defect when
discussing the analysis aspect of
the bug collection.

Defects can take a wide variety of
forms, and there is an established
taxonomy of defects (Table 1—
Page 8). Not every organization
will experience every type of de-
fect, but it helps to know about

them as potential risks.

Like insects, defects can cluster.
Where you find one type of de-
fect, keep looking – there may
likely be other similar defects
nearby in the application under
test. This happens because peo-
ple tend to work in patterns that
can propagate defects.

Boris Beizer has written about
“the pesticide effect” of defects ¹.
(Continued on Page 2)

How to Start a Bug Collection
Randall W. Rice, CSQA, CSTE

Book Review—Lessons Learned in Software Testing by
Cem Kaner, James Bach and Bret Pettichord
This book is written by three credi-
ble authors with real-world testing
experience. I found myself agree-
ing wholeheartedly with many of
the lessons presented, disagree-
ing strongly with others, and con-
fused on others.

Overall, I think that testers will find
some good ideas in the book, but
I would advise caution in going
from reading the ideas to taking
them directly into practice. One
example is lesson 146, “Don’t use
the IEEE Standard 829” (By the
way , lesson 145 was “Use the
IEEE Standard 829 for Test Docu-
mentation”). After stating the us e-
ful aspects of the standard, the
authors go on to downplay the
standard because it can result in

large volumes of test documenta-
tion. The authors dismiss quickly
how to use the standard responsi-
bly and keep the scope in control
but go into great detail about how
people have gone overboard in
documenting tests. After urging
the reader to ask “How compelling
are those benefits [of using the
standard] under your circum-
stances?”, the concluding state-
ment of this lesson is “In many
contexts, the added benefits are
not compelling. In such cases,
given the added costs and risks
associated with developing large
test documentation sets, we sub-
mit that creating Standard 829-
style documentation would be
irresponsible.” My concern is that
people may take this comment to

© 2002 Rice Consulting Solutions,
LLC

Volume 5, Issue 6
June 2002—The Software
Quality Advisor The Software Quality

Advisor Online

How to Start a Bug Collec-
tion
This article looks at how to
start studying the defect
trends in your organization for
the purpose of process im-
provement.

• Defects are elusive, but
can be understood.

• Studying defect trends is
not expensive.

• Defect analysis requires a
process, tools, and a per-
son or team to own the
process.

Inside this issue:

Look for Results, Not
Time by Johanna
Rothman

3

Links, Quotes, and
Questions from the
Mailbag

4

NIST Study—The High
Costs of Buggy Soft-
ware

6

Defect Taxonomy 8

Calendar of Events 9

heart too quickly and suffer
losses due to a lack of test doc u-
mentation. For example, try tell-
ing a government regulator that
the test standard just didn’t work
for you.

(Continued on Page 2)

http://www.riceconsulting.com

In addition, such an extreme posi-
tion should be backed up with
hard research, which is not done
in this case.

The authors are clear at the out-
set that the lessons will be contro-
versial, and some of them are.
The book is biased toward the
exploratory testing view, which
some people will really like and
others will find less than thrilling. I
expect people will be talking about
the book, which is a good thing.
We need to debate some of these
topics as a profession.

I found parts of the book to be
somewhat arrogant in tone, which
took away from my impression of
the book. The authors seem to

have an ax to grind which comes through at
many points in the book. I was also put-off by
the following comment on page 205: “Hiring,
training, pay, and promotion preference that
result in groups that are more dominated by
white males than they need to be are particu-
larly counter-productive in testing.” I was
puzzled that the reviewers and editors let a
racial/sexist comment into the book. The
authors’ point could have been made well
without pinpointing a particular race or sex.

While many of the lessons were presented
with adequate detail, other lessons are very
brief and beg for more information. For ex-
ample, lesson 172 is “Be prepared for the
build.” This lesson is three sentences long
and concludes “In a fast-paced project, a test
group without a well-managed test environ-
ment is useless.” Agreed. Now, what are
some ways to manage the environment?

Who should manage it? I would have liked to
have seen some of these shorter lessons ei-
ther dropped or more well-developed.

Summary

My overall review of the book is to read it with
caution, apply what makes sense in your env i-
ronment, and discuss the ideas among your
peers. Keep in mind that there is a lot of opin-
ion in the book. Like with many things you
read, pilot the ideas that make sense before
you try to implement them fully. I can’t give this
book a glowing endorsement because there
are so many situations I can think of that would
be ill-served by some of the lessons in the
book. However, to not discard the good with
everything else, I think that everyone will be
able to take some good things away from the
book.

cause of the defect and find ways to prevent future occurrences.

When defects are seen only as problems, people can get defens ive and
become more concerned with avoiding guilt than taking positive action.
Unfortunately, too many organizations use defects as an occasion to
punish people instead of opportunities for improvement.

What’s Needed

To build a good “bug collection” you need three key components: peo-
ple to own the process and to provide accurate information, a process
that is not overwhelming but provides an effective framework to capture
defect information, and tools to help capture and report defect informa-
tion.

This framework requires an environment of management support and
understanding that people can trust not to use the defec t information
against them. If defect information is ever used as a performance
evaluation, people will quit providing accurate data. The objective of the
bug collection is to understand the origin of defects in an organization,
not by person, but by project activities.

With this objective and environment in mind, here are some considera-
tions for the key elements of the framework:

The People

There needs to be an owner of the process. For this role, I often recom-
mend a person in the position of defect administrator. The defect admin-
istrator is not a clerical position, but rather a role that requires attention
to detail, people skills and organization skills. The defect administrator
should know at any point in time the status of defects on a project.

Others will have input and receive information from the defect manage-
ment process:

(Continued on Page 3)

Just like insects, a certain pesti-
cide may eradicate many insects
in a population, but not all of
them. Some insects will be resis-
tant to the pesticide. The resistant
bugs will produce other resistant
bugs and before long the pesti-
cide that used to work fine no
longer is effective. Similarly, some
tests are very effective until peo-
ple start to perform work in new
ways and their defects evade de-
tection. Then the challenge is to
develop new tests.

Defects are Good

In a past article, I explored the
concept of defects as learning
experiences and a cause for cele-
bration as long as the lessons are
learned and our customers and
users do not experience avoidable
problems (see “Defects are Good”
at http://www.riceconsulting.com/
defects_are_good.htm).

Defects, however, do cost money
as evidenced by the resulting re-
work. The sooner you find them
the better.

Dr. Deming had it right. For each
defect in a product, there is a
cause. And…someone was paid
to inject the defect into the prod-
uct, even if they had good inten-
tions. The quality practitioner’s
challenge is to understand the

Book Review (Cont’d.) - Lessons Learned in Software Testing by
Cem Kaner, James Bach and Bret Pettichord

How to Start a Bug Collection (Continued from Page 1)
“When defects are
seen only as
problems, people
can get defensive
and become more
concerned with
avoiding guilt than
taking positive
action. “

Page Page 22 Volume 5, Issue 6
June 2002—The Software Quality Advisor

Who’s working hard in your or-
ganization? One senior manager,
Cyril, noted the cars in the parking
lot on the weekend, as his meas-
ure of who was truly committed to
the project. Cyril also noticed
when people arrived at work and
when they left. Cyril thought that
measuring his staff’s office-time
would help him get more out of his
staff and release the product ear-
lier.

In reality, his office-time measure-
ment was only a check on his
hiring techniques, to see if he’d
hired people who thought that
being at work was important to
succeed at work. Cyril wanted to
make sure he’d hired people with
“fire in their bellies”, and that they

wanted the company to succeed
as much as he wanted it to suc-
ceed. Office-time isn’t a measure
of performance, and certainly
doesn’t guarantee that your staff
are as interested in the company’s
success as you are.

If office-time is your only measure
of performance, then people think
that they’re successful if they
show up and stay. And, if you
measure office-time as a surro-
gate for productivity, your staff will
put in their office-time, but may
not necessarily get any productive
work done.

One of my colleagues told me this
story:

“We were late on a project for a

Very Important Customer. Senior
management decreed we would
have dinner on the company every
night at 7pm. As a Director, I organ-
ized the dinners. Do you know what
it’s like to plan dinner for 60 people
every night? A wedding would have
been easier.
“It worked for about a week, maybe
two, and then people started coming
in later in the morning, and leaving
right after dinner every night. I sug-
gested we stop having dinners at
work, and just send people home to
relax and sleep. Senior manage-
ment was shocked —we were mak-
ing progress, weren’t we? I don’t
think it took any less time to finish
the project. In fact, it took longer
because we were all so tired.”

(Continued on Page 5)

Look for Results, Not Time
© 2002 Johanna Rothman

How to Start a Bug Collection (Continued from Page 2)
Testers will generate defect reports,
verify defects have been resolved,
and provide input as to the possible
origins of the def ects.

Developers will resolve defects and
provide detailed insight as to the
origins of the defects.

Help desk personnel will generate
defect reports, especially those that
are reported by customers and us-
ers after a release.

QA analysts will facilitate the defect
management process and the proc-
ess improvement efforts.

Management will receive the defect
information, make informed deci-
sions (hopefully) and drive process
improvement efforts.

It is vitally important that the people
in the above roles buy in to the de-
fect management process. A good
way to achieve this is to involve
them in designing the process. It is
also important to realize that defect
management is not a one person or
single team effort. Unless people
from multiple areas of the organiz a-
tion are involved, improvement ef-
forts will look like a few people tell-
ing other people how to “do it right.”

The Process

Ah, the process! In a world where
we struggle with defining and follow-
ing processes, if we fail to have a

“If office-time

is your only
measure of
performance,
then people
think that
they’re
successful if
they show up
and stay.”

Page Page 33 Volume 5, Issue 6

defined and repeatable process for gathering and reporting defect data, our numbers and resulting
conclusions will be incorrect. The degree of accuracy deviation may be major or minor, depending on
how well the process is defined and followed. Of course, you could have a great process and follow
it, feeding it faulty data and still have flawed conclusions. However, let’s start with defining a good
process and we’ll deal with the source data issues next.

This discussion of process will be the vehicle I will use to explain how to obtain, process, display and
understand the defect trends (our “bug collection”).

Our process will have the following components:

Input – This is the defect information gathered from the people identified above. For the task at hand
we need to know:

• Defect type/category (such as requirement error, design error, coding error, etc.)
• Defect origin (such as project activity – requirements definition, construction, testing, etc.)
• Defect reason (why the defect occurred)
• Defect s everity (cosmetic, minor, workaround, critical)
• Defect owner (who is responsible to fix?)
• When identified (date and time)
• Who identified (tester, user, etc.)
• Cost of the defect impact
• Cost to fix the defect

To gather this information, we need a tool that people can easily access and use. Specific tools and
tool strategies will be discussed a little later in this article.

Procedure – These are the steps to perform in gathering and processing defect information:

1. Report defect using specified tool or method
2. Categorize defect
3. Determine defect severity
4. Determine defect origin
5. Identify/assign defect owner
6. Resolve defect
7. Determine defect costs
8. Re-test defect
9. Determine defect resolution/status

(Continued on Page 7)

A gold mine of all kinds of inter-
esting and useful project and
testing information:

http://www.geocities.com/
mtarrani/artifacts.html

Defect tracking tools:

http://www.incose.org/tools/
tooltax/defecttrack_tools.html

Defect Prevention Techniques
for High Quality and Reduced
Cycle Time:

http://www.iscn.at/
select_newspaper/measurement/
motorola2.html

The Security of Applications –
Not all Applications are Created
Equal:

http://www.atstake.com/research/
reports/atstake_app_unequal.pdf

Using Defect Analysis to Initiate
the Improvement Process:

http://www.iscn.at/
select_newspaper/measurement/
bruelkjaer.html

Software QA Slide Show:

http://www2.umassd.edu/CISW3/
coursepages/pages/cis480/
lectures/sqa.ppt

Preventing Requirements De-
fects:

http://wwwbruegge.in.tum.de/
teaching/ws01/RE/presentations/
koch.pdf

Current Status in QA:

http://www.swt.tuwien.ac.at/
actions/download/files/qs/
Presentation%20QA%
20Research.pdf

Paper on the Basics of Soft-
ware Testing:

http://www-2.cs.cmu.edu/
~koopman/des_s99/sw_testing/
#taxonomy

tem and user acceptance testing.
There is an IEEE standard for test
plans (standard 829) that covers
just about all aspects of a test.
Many people take the standard
and reduce it down to fit their own
needs. I consider a test plan as a
tool for communication, not a
large document that will be hard
to maintain. I will typically keep
the size of the test plan to under
20 pages, except for very large or
complex projects.

Q: I came through your site
while I was surfing for faqs in
Testing. I would appreciate if
you could answer me the fol-
lowing questions which would
be helpful for me,

1) What are the characteristics
of a Test Plan?

A: A test plan is just a project
plan for testing. Test plans can be
written for various phases of test-
ing, such as unit, integration, sys-

2) What considerations are
taken to prepare the Test Plan?

A: I typically start at the highest
level and define the major objec-
tive of what the test is to validate
or verify. I usually relate each test
objective to a project objective.
Then, I identify features (functions
and attributes) to be tested (or not
to be tested) - this is the scope of
testing. Next, I identify the test
team, the schedule and the re-
sources needed (test environ-

Links

Questions From the e-Mail Bag

“A good plan, violently executed
now, is better than a perfect plan
next week. “

Gen. George S. Patton

“I do not know anyone w ho has
gotten to the top without hard
work. That is the recipe. It will not
always get you to the top, but it
will get you pretty near.”

Margaret Thatcher

"Hold yourself responsible for a
higher standard than anybody
expects of you. Never excuse
yourself."

Henry Ward Beecher

"Pick battles big enough to matter,
small enough to win."

Jonathan Kozol

“He who works his land will have
abundant food,
but he who chases fantasies lacks
judgment.”

Proverbs 12:11, The Bible

Quotes
“Fools rush in where fools have
been before.”

Unknown

“No matter how cynical you get, it
is impossible to keep up.”

Lily Tomlin

“Failure is only the opportunity to
begin again more intelligently.”

Henry Ford

Page Page 44 Volume 5, Issue 6

(Continued on Page 5)

http://www.geocities.com/mtarrani/artifacts.html
http://www.incose.org/tools/tooltax/defecttrack_tools.html
http://www.iscn.at/select_newspaper/measurement/motorola2.html
http://www.atstake.com/research/reports/atstake_app_unequal.pdf
http://www.iscn.at/select_newspaper/measurement/bruelkjaer.html
http://www2.umassd.edu/CISW3/coursepages/pages/cis480/lectures/sqa.ppt
http://wwwbruegge.in.tum.de/teaching/ws01/RE/presentations/koch.pdf
http://www.swt.tuwien.ac.at/actions/download/files/qs/Presentation%20QA%20Research.pdf
http://www-2.cs.cmu.edu/~koopman/des_s99/sw_testing/#taxonomy

ment, etc.). I pull all of this infor-
mation together, have the test
team review it, management ap-
prove it, then distribute the plan.
After it has been published or
posted, I treat the test plan like
any other project document. If it
changes, then people are notified
of the change.

3) What factors do you consider
when creating Automated
Scripts?

First, I look for those functions
that are highly repeatable and
boring to perform. I also make my
test cases and scripts very modu-
lar so they can be combined to-
gether in many different combina-
tions. Finally, I keep specific data
out of the scripts and feed it to a
basic script I place into a loop.

4) What is the difference be-
tween Static and Dynamic Test-
ing and what are the advan-

tages and disadvantages of
each?

Static testing is like a review or
walkthrough where the item being
inspected does not change. You
can find more defects in static
tests because in dynamic tests
defects may be masked behind
other defects. People who get
really good in reducing defects
are good at performing static tes t-
ing.

Dynamic testing is testing per-
formed while executing the sof t-
ware. It is called dynamic because
the code execution is constantly
changing. Dynamic testing is
needed for making sure the sof t-
ware works according to the
specs and requirements and ac-
cording to user needs.

5) Which Software Development
cycle is most challenging to

validate and why?

In my opinion, the very first activ-
ity of defining the user needs (pre-
requirements) is the most difficult
to validate. The validation occurs
in User Acceptance Testing,
which I believe should be based
on user scenarios, not require-
ments or any other paper doc u-
ment. The paper document can
be wrong. The challenge is to
model the user's world correctly
and to get an adequate coverage
in testing.

If you have a question for Randy,
e-mail him at
rrice@riceconsulting.com.

Questions from the Mail Bag (Continued from Page 4)

fixes to good fixes? The FFR
may be higher than people
realize because it’s not always
obvious that newly found errors
were caused by bad fixes. The
higher the number, the more
people are spinning their
wheels, trying to fix something
that just won’t stay fixed. I’ve
noticed that the longer people
work and the more tired they
are, the higher the FFR. (An
acceptable FFR number de-
pends on the product you’re
building. For commercial prod-
ucts, I become concerned
when I see a FFR of more than
15%, because it’s too hard for
the project team to find, fix,
and verify the defects. For mis-
sion critical or safety products,
an FFR of even 5% may be
barely acceptable.)

• Does the project team know
what they should be working
on? Do the requirements stay
relatively static, or are even the
core requirements changing
every week? Do all the stake-
holders agree about why you
are building this project, who
will buy the product, and who

will use the product? Sometimes, instead of slogging through the
work, it’s worth taking more time to revisit and rewrite the require-
ments, and then working with confidence that you are addressing
the right problem.

• How are project decisions made, and how often are those dec i-
sions revisited? Can the project team make decisions as a team, or
does the project manager make all the decisions, which the project
team then ignores, so that the team does what they want anyway?
Are decisions revisited frequently? If the product or project dec i-
sions are continually revised, then the team can’t make progress
on the project. Look at project meeting minutes, and see when the
decisions change.

• Are team members other than the project manager looking ahead
at project risks, and deciding what to do about them? Does the
project team have a way to assess risk, and to develop plans to
deal with those risks?

• How well are people working together? Are they working as a
team, or are they each working alone, isolating themselves from
each other? In my experience, when teamwork breaks down on
projects, the team members are trying to protect themselves from
something painful or stupid, such as or miscommunications, un-
clear project roles and responsibilities, or many other causes. As a
manager, you can help uncover this problem and help people fix it.

• Does the project team know what you think success means for this
project, including releasing the product quickly? Sometimes we
don’t clearly identify and communicate the objectives that are most
important to us. If you don’t tell the project team you want the pro-
ject completed by a certain date, they won’t know.

(Continued on Page 8)

Look for Results, Not Time (Continued from Page 3)
I’ve noticed that people who
spend a lot of time at work tend to
spend time on non-work things,
because they’re not home to ar-
range the rest of their lives.
If you’re currently measuring of-
fice-time because you want to
complete a project quickly, then
tell your staff that you want the
project done quickly. Explain how
to make other tradeoffs on the
project, to meet the schedule
deadline.

Think about why you are measur-
ing office-time and what you really
are trying to learn. Here are ques-
tions to help you assess the pro-
ject, other than the amount of time
people spend at work:

• Do you have a project sched-
ule, with milestones? Do the
people have clearly identified
tasks, broken down into inch-
pebble tasks (one to two-day
tasks)? Are people meeting
their estimated dates? Is
something preventing people
from getting their work done?

• What is the Fault Feedback
Ratio, FFR, the ratio of bad

Page Page 55 Volume 5, Issue 6

“People who get
really good in re-
ducing defects are
good at performing
static testing.”

mailto:rrice@riceconsulting.com

According to a
June 25th story in
Computerworld
that quotes a 309
page study con-
ducted by the
National Institute
of Standards and
Technology

(NIST), software defects are costing the
U.S. economy an estimated $59.5 billion
each year, with more than half of the cost
borne by end users and the remainder by
developers and vendors.

“Improvements in testing could reduce this
cost by about a third, or $22.5 billion, but it
won't eliminate all software errors,” the study
said. Of the total $59.5 billion cost, users
incurred 64% of the cost and developers
36%.

There are very few markets where "buyers
are willing to accept products that they know
are going to malfunction," said Gregory
Tassey, the NIST senior economist who
headed the study. "But software is at the
extreme end, in terms of errors or bugs that
are in the typical product when it is sold."

The report took 18 months of research that
included extensive feedback from end
users. The study also examined the im-
pact of buggy software in several major
industries, including automotive, aero-
space and financial services. The results
were then extrapolated for the U.S. econ-
omy.

The study was conducted for NIST by the
nonprofit Research Triangle Institute in
Research Triangle Park, N.C.

"No one thinks you can get all the errors
out of software," said Tassey. Vendors are
under pressure to get products to market
quickly, and there are diminishing returns
on testing: The more effort you put into it,
the fewer the bugs that are found.
"However, the general consensus seems
to be [that] the current state of the art with
respect to testing is poor and can be suffi-
ciently improved," he said.

According to the Computerworld article,
“The study didn't propose specific actions
for improving testing but called for the de-
velopment of testing standards, noting that
today's testing tools "are still fairly primi-
tive." “

The article also quoted the report as stat-
ing that “standardized testing tools,
scripts, reference data and metrics,
among other things, "that have under-
gone a rigorous certification process
would have a large impact on the inade-
quacies" now found. “

You can read more about this report at
www.computerworld.com.

You can download a copy of the 309
page report in PDF format at www.
nist.gov/director/prog-ofc/report02-3.pdf

Note: In the next issue of the Software
Quality Advisor, Randy will comment
on the report.

NIST Study: Buggy software costs users, vendors nearly $60B annually

Page Page 66 Volume 5, Issue 6

1. Management Practicum Workshop .Johanna Rothman and Esther Derby

Do you have real management prob-
lems? Want to explore real and possible
solutions? Want to refresh your manage-
ment skills? Management Practicum is an
experiential workshop to help you

solve your management problems. Manage-
ment Practicum works with real situations
and challenges that managers in software
organizations face. Through facilitated dis-
cussion, presentations, and

simulations, instructors and session attendees
will create learning experiences to address the
management issues that participants bring to
the workshop. We present this publicly and
in-house.

2. In-House Workshops .

Software Project Management:
Software projects are challenging. Al-
though books can help, you’ll need to
develop your own pragmatic approach.
In this workshop, we address what soft-
ware project managers really do: how to
make tradeoffs between schedule, cost,
defects, people, and the work environ-
ment; how to plan and monitor a pro-
ject; and how to know when a project is
complete.

Johanna Rothman
phone: 781/641-4046

Advanced Topics in Project
Management: Now that you have some
experience managing projects, what are
your top problems? We’ll address attendee
concerns for your organization, ranging
from forming and leading teams to keeping
sponsors engaged, from decision-making
processes to how to build slack into the
schedule. This workshop is customized for
your organization.

Rothman Consulting Group, Inc.
e-mail: jr@jrothman.com

Talking To Techies: If you’re a non-
technical manager in a technical world, talk-
ing to your technical staff can be an exercise
in frustration for both sides. Explore what
makes technical people different, how to rec-
ognize failing interactions, and how to im-
prove your communication skills with the
talented, challenging people who work with
you.

www.jrothman.com
fax: 781/641-2764

“...the general consen-
sus seems to be [that]
the current state of the
art with respect to test-
ing is poor and can be
sufficiently improved"

www.nist.gov/director/prog-ofc/report02-3.pdf
mailto:jr@jrothman.com
http://www.jrothman.com
http://www.computerworld.com/managementtopics/roi/story/0,10801,72245,00.html

It is important to understand that
defects have a lifecycle that may
be repeated multiple times before
the defect is resolved (Figure 1).

Output – These are the deliver-
ables seen as a result of perform-
ing the process:

• Defect logs
• Defect profiles
• Current defect status list
• Charts and graphs of defect

information

How to Report Defect Informa-
tion

I use the following guidelines
when reporting defect information:

• Be as objective and fair as

possible
• Be as accurate as possible
• Don’t report defect informa-

tion by person, only by pro-
ject or other aggregate view

• Use easy to understand
graphics

• Keep the information in con-

text by providing past data if
available

• Be able to answer questions
about the data

QC – This is to verify defect infor-
mation is gathered and reported
correctly:

• Checklists to prompt for com-

pleteness of defect informa-
tion and to verify the process
has been followed as de-
signed

• Verification of source defect
data to ensure the data is
correct and reasonable

Standards

The defect reporting proces s can
be supported by standards that
list the defect information to be
reported, how the composite de-
fect information will be reported
and how to categorize and priori-
tize defects. The standard should
contain a list of defect types such
as seen in Table 1 on Page 8.

Tools

The most obvious and applicable tools for this job are commercially
available defect tracking tools. There are close to one hundred tool
brands with varying levels of functionality. There are also web-based
defect tracking services. Another option is to build your own tool, such
as the one shown in Figure 2. However, homegrown tools may not be as
robust as those you can buy. The important thing is to be able to get and
report composite defect information from the tool.
(Continued on Page 9)

How to Start a Bug Collection (From Page 3)

Page Page 77 Volume 5, Issue 6

Figure 1—The Defect Life Cycle

DiscoveryDiscovery

ResolutionResolution

ReportingReportingRe-testRe-test

Figure 2—Homegrown Defect Tracking Tool

Table 1 - Defect Taxonomy

To understand your defects, you can view them from at least three perspectives:

1. When the defect w as injected:

• Local: The defect occurs in your internal development. In this case you
can indicate the project phase, for example: ds for design or cd for cod-
ing.

• Regional: The defect is in a related software project, but not the one in
the current time/defect log. In this case you can indicate the injection
phase pr (for ̀ project') or op (for `other project' of my own organization).

• External: The defect is in software out of your scope of control or re-
pair. In this case you can call the injection phase ex (for ̀ external').

2. Defect types:

• IC: Interface Capability.

The design of an interface is wrong, so that the interface does not pro-
vide the functionality that it must provide.

• IS: Interface Specification.
The specification of an interface is wrong, so that the parameters in-
volved cannot transfer all of the information required for providing the
intended functionality. This is a less fundamental variant of IC: Only
parameters need be added.

• ID: Interface Description.
The non-formal part of the description of an interface is incomplete,
wrong, or misleading. This is typically diagnosed after an IU.
Note that the description of a variable or class attribute or data structure
invariant is also an (internal) interface.

• II: Interface Implementation.
Something that I cannot influence does not work as it should.
This defect should never be used when I am the source of the defect.
(In principle, this is a special case of ID.)

• IU: Interface Use.
An interface was used wrongly, i.e., in such a way as to violate the inter-
face specification.

• IV: Data Invariant.
A special case of IU. The interface violation is: not maintaining the in-
variant of some variable or data structure. Violating the meaning of a
simple variable is a special case of this.

• MD: Missing Design (of required functionality).
A certain requirement is covered nowhere in the design.
This is stronger than IC, w here the coverage is present, but incomplete.

• MI: Missing Implementation (of planned functionality).
A certain part of a design was not implemented.
If the part is small, MC, MA or WA may be more appropriate.

• ME: Missed Error Handling.
An error case was not handled in the program (or not handled properly).

• MA: Missing Assignment.
A single variable was not initialized or updated. Only one statement
needs to be added.

• MC: Missing Call.
A single method call is missing. Only one statement needs to be added.

• WA: Wrong Algorithm.
The entire logic in a method is wrong and cannot provide the desired
functionality. More than one statement needs to be added or changed.

• WE: Wrong Expression.
An expression (in an assignment or method call) computes the wrong
value. Only one expression needs to be changed.

• WC: Wrong Condition.
Special case of WE. A boolean expression was wrong. Only one ex-
pression needs to be changed.

• WN: Wrong Name.
Special case of WE. Objects or their names were confused. The wrong
method, attribute, or variable was used. Only one name needs to be
changed.

• WT: Wrong Type.
Two ̀ similar' types were confused.

3. Defect Reason - why the defect was introduced:

• om: Omission.

I forgot something that I knew I had to do.
• ig: Ignorance.

I forgot something, because I did not know I had
to do it.

• cm: Commission.
I did something wrong, although I knew in princ i-
ple how to do it right.

• ty: Typo.
I did something trivial wrong, although I knew ex-
actly how to do it right.

• kn: Knowledge.
I did something wrong, because I lacked the gen-
eral knowledge (i.e., the education) how to do it
right.

• in: Information.
I did something wrong, because I lacked the spe-
cific knowledge how to do it right or had received
misleading information about how to do it. This
refers to a problem with communication.

• ex: External.
I did nothing wrong. The problem was somewhere
else and the defect was introduced by some other
person.

Source: Lutz Prechelt, prechelt@ira.uka.de, http://www.
geocities.com/mtarrani/defecttypes.doc

Page Page 88 Volume Volume 5, 5, Issue Issue 66
June 2002—The Software Quality Advisor

• Do you own this project? Do you say things such as
“my “project instead of “our” project? If is your pro-
ject, then your staff will never be committed; their
work will be just a job. It has to become their/our
project.

You can say s omething like this to your staff: “We won't
reach these goals if any of us are working at less than our
peak effectiveness. Do you have ways of knowing when
your effectiveness is slipping? (You can prime the pump
by suggesting things like FFR.) If you can tell me what to
look for, then I'll be able to notice and let up on the pres-
sure. And here's what you can notice about me, so you
can let me know when I'm slipping.”

Remember that your staff’s effort goes to what is meas-
ured. Office-time is a dysfunctional measurement. When
people are evaluated based on a single measurement,
they will find ways to optimize that measurement that do
not necessarily contribute to the desired outcome. If you
measure and reward office-time, you’ll only get office-
time, not a finished product. Instead, help the team view a
picture of the project and the evolving product. You’ll
know if people are committed to your project and are fired
up about it.

Johanna Rothman is a consultant, trainer and author
based out of Arlington, MA You can contact her at
jr@jrothman.com.

Look for Results, Not Time
(Continued from Page 3)

http://www.geocities.com/mtarrani/defecttypes.doc
mailto:jr@jrothman.com

P.O. Box 891284P.O. Box 891284
Oklahoma City, OK 73189Oklahoma City, OK 73189

405405--793793--74497449
405405--793793--7454 Fax7454 Fax
rrice@riceconsulting.comrrice@riceconsulting.com

July 2002 Issue:

Standards are Your Friend
by Randall W. Rice

Book Review—Communication Gaps and
How to Close Them

Coming to Chicago!

August 14—16, 2002

A Three-day course in User-Oriented Ap-
proaches for Delivering Quality Software

See details and register at
www.riceconsulting.com/chicagoq3_2002.htm

June, 2002
© 2002, Rice Consulting Solutions, LLC

EUROStar Conference

November 11—15, 2002

Edinburgh , Scotland

Randy will be presenting a one-
day tutorial on Surviving the Top
Ten Challenges of Software Tes t-
ing and a keynote address on
Getting the Most Value from
Every Person on Your Test Team.

We hope to see you at one of
these events!

If you have a group of 12 or
more people in your city that
would like to sponsor a training
event, contact Randy Rice at
rrice@riceconsulting.com to
find out how to book a special
presentation.

User-oriented Practices for De-
livering Quality Software

Chicago, IL, August 14—16

Sponsored by the Process Man-
agement Group, Ltd. And Rice
Consulting Solutions, LLC

www.riceconsulting.com

How to Become an Effective
Test Team Leader, Madison, WI,
October 3 — 4, 2002

Sponsored by the Wisconsin QA
Chapter.

Register at www.riceconsulting.
com/madison2002.htm

A Three-day Course in Web
Testing

Chicago, IL, October 30—
November 1, 2002

Sponsored by the Process Man-
agement Group, Ltd. And Rice
Consulting Solutions, LLC

Bug Collection (Continued from Page 7)

You can find an extensive list of defect tracking tools and ser-
vices at: http://www.incose.org/tools/tooltax/defecttrack_tools.
html

Summary

It’s easy to spend tons of money on testing, especially if tools
are a part of the effort. If you want to get the greatest value for
the money, spend your time and money to learn about your
defects. Defects are costing your organization money in re-
work, whether people realize it or not. Since the cost is already
being realized, it only makes sense to take the extra step to
learn from them.

 1. Boris Beizer, Software Testing Techniques. Second edition.
1990

Calendar of Events

"Test everything. Hold onto the good."
I Thessalonians 5:21

We’re on the Web!
www.riceconsulting.com

Page Page 99

Presented by Process
Management Group, Ltd.
(www.pmgltd.com), the Midwest's
Premier Provider of IT Quality
and Software Testing Services,
and Rice Consulting Services,
LLC (www.riceconsulting.com),
a world recognized leader in
Quality and Testing Training.

mailto:rrice@riceconsulting.com
http://www.riceconsulting.com
http://www.pmgltd.com
http://www.riceconsulting.com
http://www.riceconsulting.com/chicagoq3_2002.htm
http://www.riceconsulting.com/chicagoq3_2002.htm
http://www.riceconsulting.com/madison2002.htm
http://www.riceconsulting.com/chicagoq4_2002.htm
http://www.testingconferences.com
mailto:rrice@riceconsulting.com
http://www.incose.org/tools/tooltax/defecttrack_tools.html

