
Testing has been described as an
art (The Art of Software Testing
by Glenford Myers), a craft (The
Craft of Software Testing by Brian
Marrick), and a process (Effective
Methods for Software Testing by
William E. Perry), but I would like
to examine another aspect of test-
ing, that is, the Science of Sof t-
ware Testing.

A Brief Background

I graduated college with a Bache-
lor of Science degree as a Math
major, which was accidental. I
started out as an electrical engi-
neering major but changed late in
my Junior year when I discovered
that EE really wasn’t as appealing
to me as I had originally thought it
would be. In my schooling, I was
trained in the traditional scientific
method, which affects how I see
the practice of science.

The Traditional Scientific
Method

The traditional scientific method
has been the predominant method
for people to observe and under-
stand the operation of world and

the universe. In recent years,
some scientists have developed
methods that are less rigorous,
but the traditional method is what I
will use as the basis for this arti-
cle. The steps in the traditional
method are:

1. Observe some aspect of the
universe.

2. Invent a theory that is consis-
tent with what you have ob-
served.

3. Use the theory to make pre-
dictions.

4. Test those predictions by
experiments or further obser-
vations.

5. Modify the theory in the light
of your results.

6. Go to step 3.

There are differing views among
scientists today as to what consti-
tutes a theory, a hypothesis and a
fact. How someone defines these
terms can greatly affect their view
of science. To fully expound on

these differing views of the scien-
tific method and how the terms
are defined is beyond the scope
of this article. It is important, how-
ever, to understand there is often
a level of bias since people will
hold certain definitions that are
consistent with their beliefs of how
the world operates. This is circular
reasoning, because if I am trying
to explain how and why some-
thing happens, it will be based in
some degree of a framework that I
believe in already. Therefore, one
of the great challenges of science
is to maintain objectivity.
(Continued on Page 2)

The Science of Software Testing
By Randall W. Rice, CSQA, CSTE

Book Review—Peer Reviews in Software by Karl Wiegers
I was delighted to read Karl
Wiegers’ latest work because of
the need I see for a current re-
source for reviews that is easy to
read and practical in application.
Peer Reviews in Software meets
both criteria – easy to read and
full of practical ideas for imple-
menting reviews in your organiza-
tion.

The scope of peer reviews as
covered in this book range from
informal walkthroughs to formal
inspections, although the most

attention in the book is focused on
inspections. Wiegers starts the
book by laying a solid foundation
of why review -based techniques
are important. This information is
an excellent resource for anyone
wanting to make the case for early
quality control in a project.

What I Liked About This Book

Wiegers describes in practical
details the review process and
how to apply it by using
(Continued on Page 2)

© 2002 Rice Consulting Services, Inc.

Volume 5, Issue 5
May 2002—The Software
Quality Advisor The Software Quality

Advisor Online

The Science of Software Testing
This article discusses software
testing as a science, including:

• How scientific experiments are
like tests

• How many points of terminol-
ogy have similar meaning in
both science and testing.

• How testing can apply scientific
approaches to be performed at
a high level of reliability.

Inside this issue:

Keys to Successful User
Acceptance Testing

3

Links, Quotes, and Ques-
tions from the Mailbag

4

Calendar of Events 8

http://shop.barnesandnoble.com/bookSearch/isbnInquiry.asp?sourceid=00001811744777354732&ISBN=0201734850

practical examples. Most impor-
tantly, Wiegers never loses sight
of the many human factors that
will make or break the reviews
effort in an organization. He pro-
vides plenty of practical advice on
dealing with the challenges of
implementing reviews.

Content

Topics covered in the book in-
clude:

· Overcoming resistance to

reviews
· Inspection teams and roles
· Inspection process stages
· Scheduling inspection events
· Analyzing inspection data
· Peer review training

· Critical success factors and
pitfalls

· Relating peer reviews to
process improvement mod-
els

Scoring

Readability - 5

Breadth of coverage – 5

Depth of discussion - 5

Accuracy - 5

Credibility - 5

Organization - 5

Overall Score – 5

Summary

This is a very complete and easy
to read book on the topic of soft-
ware project reviews. The book’s
practicality should earn it a place
on any software quality practitio-
ner’s or project manager’s book-
shelf.

Reviewer

Randy Rice, CSQA, CSTE

Format: Paperback, 256pp.
ISBN: 0201734850
Publisher: Addison Wesley Long-
man, Inc.
Pub. Date: December 2001

by the experimenter; an act or operation undertaken in order to discover
some unknown principle or effect, or to test, establish, or illustrate some
suggest or known truth; practical test; poof.”

Hypothesis – “1. A supposition; a proposition or principle which is sup-
posed or taken for granted, in order to draw a conclusion or inference
for proof of the point in question; something not proved, but assumed
for the purpose of argument, or to account for a fact or an occurrence;
as, the hypothesis that head winds detain an overdue steamer.

2. (Natural Science) A tentative theory or supposition provisionally
adopted to explain certain facts, and to guide in the investigation of oth-
ers; hence, frequently called a working hypothesis.”

Assumption – “The thing supposed; a postulate, or proposition as-
sumed; a supposition.”

Theory – “1. A doctrine, or scheme of things, which terminates in
speculation or contemplation, without a view to practice; hypothesis;
speculation.

2. An exposition of the general or abstract principles of any science; as,
the theory of music.

3. The science, as distinguished from the art; as, the theory and prac-
tice of medicine.

4. The philosophical explanation of phenomena, either physical or
moral; as, Lavoisier's theory of combustion; Adam Smith's theory of
moral sentiments.”

Fact – “2. An effect produced or achieved; anything done or that comes
to pass; an act; an event; a circumstance.

3. Reality; actuality; truth; as, he, in fact, excelled all the rest; the fact is,
he was beaten.

(Continued on Page 3)

For the purpose of defining the
working definitions of this article I
will outline the following terms,
which I do not propose to be per-
fect or accepted by everyone.
The source is Webster's Revised
Unabridged Dictionary, © 1996,
1998 MICRA, Inc.

Observation – “(a) The act of
recognizing and noting some fact
or occurrence in nature, as an
aurora, a corona, or the structure
of an animal. (b) Specifically, the
act of measuring, with suitable
instruments, some magnitude, as
the time of an occultation, with a
clock; the right ascension of a
star, with a transit instrument and
clock; the sun's altitude, or the
distance of the moon from a star,
with a sextant; the temperature,
with a thermometer, etc. (c) The
information so acquired.

Note: When a phenomenon is
scrutinized as it occurs in nature,
the act is termed an observation.
When the conditions under which
the phenomenon occurs are artif i-
cial, or arranged beforehand by
the observer, the process is called
an experiment. Experiment in-
cludes observation.”

Experiment – “1. A trial or special
observation, made to confirm or
disprove something doubtful; esp.,
one under conditions determined

Book Review (Continued from Page 1)
Peer Reviews in Software by Karl Wiegers

The Science of Software Testing (Continued from Page 1)

“...there is often a

level of bias since
people will hold
certain definitions
that are consistent
with their beliefs of
how the world
operates. ”

Page Page 22 Volume 5, Issue 5
May 2002—The Software Quality Advisor

“Managers, develop-
ers, and customers
sometimes oppose
reviews because
they believe reviews
will cost too much
and slow down the
project. In reality, re-
views don’t slow the
project—defects do.”

Karl Wiegers

Introduction

I get a lot of questions each
month about user acceptance
testing (UAT) – what it is, how to
perform it, which (if any) tools to
use, and a variety of other ques-
tions. The purpose of this article is
to build on a base of past articles
and continue to build a knowledge
base and lessons learned. Who
knows? One day all of these arti-
cles may turn into a book!

The keys presented in this article
are not hidden from view, just
often overlooked by people. If you
ignore them, you will experience
problems and less than effective
user acceptance testing. If you

heed them, you will open new
doors to involving your users in
testing.

User Acceptance Testing (UAT)
Defined – User acceptance tes t-
ing is the validation that a system
or application will meet user
needs in the operational or busi-
ness environment.

This article can be applied from
multiple perspectives:

• If you are a tester or test

facilitator, this article is writ-
ten directly to you. Your job
is to help users plan and
conduct an effective test to
validate that the application

will work correctly in their
environment.

• If you are a user, focus the

points in this article to you
and other users that will be
involved in the test.

• If you are a project manager,

this article can provide valu-
able ways to involve users in
the entire project, not just
testing.

• If you are a developer, this

article can help you under-
stand what the users will
need to do in testing the ap-
plication. You can use the

(Continued on Page 6)

Keys to Successful User Acceptance Testing
By Randall W. Rice, CSQA, CSTE

The Science of Software Testing (Continued from Page 2)
4. The assertion or statement of a
thing done or existing; sometimes,
even when false, improperly put,
by a transfer of meaning, for the
thing done, or supposed to be
done; a thing supposed or as-
serted to be done; as, history
abounds with false facts.”

Law – “5. In philosophy and phys-
ics: A rule of being, operation, or
change, so certain and constant
that it is conceived of as imposed
by the will of God or by some con-
trolling authority; as, the law of
gravitation; the laws of motion; the
law heredity; the laws of thought;
the laws of cause and effect; law
of self -preservation.

6. In mathematics: The rule ac-
cording to which anything, as the
change of value of a variable, or
the value of the terms of a series,
proceeds; mode or order of s e-
quence.

7. In arts, works, games, etc.: The
rules of construction, or of proc e-
dure, conforming to the conditions
of success; a principle, maxim; or
usage; as, the laws of poetry, of
architecture, of courtesy, or of
whist.”

The Science of Software Test-
ing

Some testing methods are per-
formed at a “junk science” level,
which are often based on small

“User
acceptance
testing is the
validation that
a system or
application
will meet user
needs in the
operational or
business
environment.”

Page Page 33 Volume 5, Issue 5

sample sizes and poorly controlled or documented experiments. In software development, this
is usually called the “demo” and is performed by executing the software with constructed test
cases that are known in advance to work.

Rigorous testing, on the other hand, is based on observing the difference between the actual
behavior and the expected behavior of the software to be tested (the hypothesis). Testing
should be seen as both verification (testing against specifications) and validation (testing
against the real world). Both verification and validation are needed because specifications
aren’t perfect.

Aspects of the Science of Software Testing

Pre-definition of Expected Results

Pre-definition of expected results is similar to the scientist that predicts the outcome of an ex-
periment before it is performed by proposing a hypothesis. There is something about predicting
the outcome in advance that adds a degree of rigor to the findings. If you wait until the experi-
ment is over and try to interpret the results in light of your understanding and observation, it is
easy to convince yourself and others that what you observed was a validation of your hypothe-
sis. When the actual results of the experiment do not match your pre-defined expected results,
the discrepancy should lead you to question the experiment, the hypothesis, or both.

Observation

Without observation, it is impossible to tell the outcome of a test or an experiment. Although
this makes sense, it is tempting to design tests and experiments that are difficult if not impossi-
ble to observe. We may want to prove or test something, but real-world constraints prevent
constructing an accurate experiment. That’s why you can’t test everything – not everything is
testable.

Repeatability

In science, an experiment may be performed thousands of times before a trend can be estab-
lished. The first time a result is observed the scientist isn’t sure if the result was due to an un-
known aspect of the experiment or a predictable behavior of the subject. To provide a confir-
mation of the experiment, it may need to be repeated many times. Likewise, in testing, when a
defect is observed, the first test may be seen as the indicator and follow -up tests may be seen
as the confirmation. After a defect has been fixed, the test must be repeated exactly as before
to ensure the fix works.

(Continued on Page 5)

In recent issues of the Software
Quality Advisor newsletter
(February and March, 2002), we
explored how an organization
could tell how they were doing in
other ways than using the CMM
framework. However, I still like the
CMM are in response to some
requests , here are some links that
you may find very helpful for as-
sessing yourself and for learning
more about the CMM and related
frameworks.

A comparison between the CMM
and ISO 9000

http://www.cs.njit.edu/~axp9532/
cmm/cmm_iso_compare.html

Statistical Process Control in
Level 4 and Level 5 Organizations
Worldwide by Ron Radice

http://davidfrico.com/radice00b.
htm

Software Acquisition Process
Questionnaire

http://www.sei.cmu.edu/pub/
documents/97.reports/
pdf/97sr013.pdf

For a view of where the CMM
started

http://www.sei.cmu.edu/pub/
documents/93.reports/pdf/tr24.93.
pdf

Evaluation checklists for CMM
levels 2,3,4, and 5

http://davidfrico.com/
seievaluationxls.htm

http://davidfrico.com/sw -cmm-
checklist.pdf

CMM Questionnaire

http://www.sei.cmu.edu/
publications/documents/94.
reports/94.sr.007.html

Example: 100 defects in a sof t-
ware application with 200 function
points would yield a defect density
of .5.

Q: I need some clarification on
the following words, if you can
please define them for me.
The first 3 are used inter-
changeably within my com-
pany. I know that they are 3
different things but no one
seems to know what exactly
each one is.

Q: "What is Defect Density?
What is it used for and the ba-
sic definition?”

A: Defect Density is a metric that
indicates how many defects are in
software. This is usually com-
puted by counting the number of
defects found in testing the sof t-
ware and dividing by a sizing
measure such as function points,
lines of code, or testable require-
ments.

1) PERFORMANCE TESTING
2) STRESS TESTING
3) VOLUME TESTING

A: Here's my definitions, which I
also benchmark against the way
most other people use the terms:

Performance Testing - A term that
generally speaks to testing an
application to validate perform-
ance levels or system efficiency.
This term also can include load

Links

Questions From the e-Mail Bag

“You cannot depend on your
eyes when your imagination is
out of focus.”
Mark Twain (1835 - 1910)

“Diplomacy is the art of saying
'Nice doggie' until you can find
a rock.”
Will Rogers (1879—1935)

Great services are not canceled
by one act or by one single error.
Benjamin Disraeli (1804 -
1881)

"Formal education will make
you a living; self-education will

make you a fortune."

Jim Rohn

“A man who lacks judgment
derides his neighbor,
but a man of understanding
holds his tongue.”
Proverbs 11:12, The Bible

Quotes
“The greatest use of life is to
spend it for something that will
outlast it.”
William James (1842 - 1910)

“Imagination is more important
than knowledge...”
Albert Einstein (1879 - 1955)

“Imagination is the beginning
of creation. You imagine what
you des ire, you will what you
imagine and at last you create
what you will.”
George Bernard Shaw
(1856 - 1950)

Page Page 44 Volume 5, Issue 5

(Continued on Page 5)

http://www.cs.njit.edu/~axp9532/cmm/cmm_iso_compare.html
http://davidfrico.com/radice00b.htm
http://www.sei.cmu.edu/pub/documents/97.reports/pdf/97sr013.pdf
http://www.sei.cmu.edu/pub/documents/93.reports/pdf/tr24.93.pdf
http://davidfrico.com/seievaluationxls.htm
http://davidfrico.com/sw-cmm-checklist.pdf
http://www.sei.cmu.edu/publications/documents/94.reports/94.sr.007.html

testing, stress testing, and the
testing of throughput levels
(volume testing).

Stress Testing - Testing a system
to its failure point by applying con-
current user load or very high
numbers of transactions. Another
aspect of stress testing (although
it is not commonly referred to as
such) is testing the input a data
element can accept or store - es-
sentially stressing the field level
elements.

Volume Testing - The volume of
data (throughput) that an applica-
tion can process in a given period
of time. (e.g., transactions per
minute, per hour, per day, etc.)

Load Testing - You didn't ask, but
it fits in - Testing with specified
levels of users or transactions.
This is also sometimes called
Concurrency Testing due to the
use of actual or virtual concurrent

system users.

Q: My team is responsible for
testing mainframe, GUI and
soon web based applications.
We are discussing changing
the name of our team to more
closely reflect what we do.
We're considering Quality Con-
trol and Quality Assurance.
What is the difference between
control and assurance?

A: QC is testing or inspecting
something for the purpose of find-
ing defects. QA is the manage-
ment of quality and oversees the
adherence to processes. QA also
includes measurement, standards
and process deployment besides
being consultants to the test team.
Realistically, most QA groups
perform some level of testing, but
in the classic definition QA is a
facilitator to testing.

Questions from the Mail Bag (Continued from Page 4)

of test reliability that is appropriate
to the risk. Your test is only as good
as the test environment!

Performing the Experiment

The performance of the experiment
is an exercise in carefully following
the design of the experiment. The
research scientist doesn’t improvise
unless they are doing work apart
from the plan. Granted, some of the
great scientific discoveries have
occurred because the researcher
tried something other than the
planned experiment, but these are
exceptions rather than the rule. In
testing it is important to stick to your
test plan. It’s alright to test other
cases, just be sure you document
what you did so you can repeat the
test if you have to.

Having a Control Group

In scientific experiments control
groups are used as a baseline for
comparison of results. For example,
a researcher might test a trial medi-
cation on one group of people while
giving a sugar pill (placebo) to an-
other group. The people in the ex-
periment do not know if they have

been given the real medication or the placebo. This “double
blind” research helps to counteract subconscious biases.

In testing we also need a baseline of correct system behavior as
a baseline.

Interpreting Results and Drawing Conclusions

One of the great challenges of science is to observe the tests of
a hypothesis and make an objective reasoned interpretation of
the results. The challenge of doing this task is maintaining ob-
jectivity and having the courage to report what you actually ob-
served as opposed what someone else expected to see. Gee,
that sounds familiar.

In testing, you can only speak to what you have observed. It is
unrealistic and unwise to predict results from what could be
seen from tests not performed.

Modifying the Hypothesis

In testing, the main hypothesis is often that the system should
work under given conditions. However, there is another oppos-
ing hypothesis that although the system should work, there are
defects in it that need to be found. The second hypothesis is the
safest one.

When your test results prove the second hypothesis is true, then
a fundamental shift starts to occur in the minds and attitudes of
those who held the first hypothesis. This is when many people
instead of modifying the hypothesis try to discredit or invalidate
the experiment or the person performing the experiment.
(Continued on Page 6)

The Science of Software Testing (Continued from Page 3)
Although this sounds simple, it
may be very difficult in actual
practice to get the second test
environment set up exactly as the
first test environment.

Construction of the Experiment

In scientific research, experiments
are carefully planned and con-
trolled. The laboratory environ-
ment grew out of the need to
prove conditions during an experi-
ment and to repeat the experi-
ment. In this analogy of testing as
science, what many people do is
perform experiments in their
kitchen, not in a controlled labora-
tory environment. This is a critical
lapse, as the test environment can
impact many external and internal
factors of the test which could
very well lead to false test results.
I would venture to say that no
other discipline could get away
with the lax methods used in
many software tests, especially
where environments are con-
cerned.

In testing, carefully constructed
and controlled environments are
sometimes needed to get the level

Page Page 55 Volume 5, Issue 5

“Realistically, most
QA groups perform
some level of test-
ing, but in the clas-
sic definition QA is a
facilitator to testing.”

keys to guide users in planning
their test.

Key #1 – Understand that UAT
is Performed at the Worst Pos-
sible Time in the Project

Most UAT efforts happen at the
end of the project because this is
when the entire system is assem-
bled or installed. Until the end of
the project, users may be able to
test parts of the system or appli-
cation, but not the system as a
whole. This is bad because the
end of the project is the worst time
to find and fix major problems.
Each problem found and fixed in
system testing or UAT which has
been in the system since require-
ments has a 10 times or greater
cost factor had it been found or
fixed in requirements or design.
This is due to the ripple effect that
the fix may cause in other areas
of the system.

The solution is to involve users
throughout the project from the

very beginning. When users are
providing input to user require-
ments, they can also be defining
acceptance criteria and can be
involved in requirement reviews
and inspections.

Key #2 – Base the Test on Real-
world Conditions, Not User Re-
quirements

This is one of the most controver-
sial things I teach about UAT, but
if you don’t base the test on real-
world conditions you are missing
the point of UAT. There are two
sides to testing – verification and
validation. Verification is testing
based on specifications and re-
quirements and is often performed
by the producer of the software.
Validation is testing based on
real-world operational conditions
and is often performed by the user
or customer. Both perspectives of
testing should be performed. Vali-
dation is necessary because re-
quirements have defects. In many
cases, the requirements are not

available, such as in the case of vendor-developed software.

The solution is to have users design tests that model their world. The
test is to determine if the system or application will correctly support the
real world conditions.

Key #3 – Understand Your Users

UAT is not a “one-size fits all” activity. Some user groups will not have
the motivation, time or skills to design and perform an adequate test.
Some user groups will be able to perform a very extensive test. One
solution is to profile the affec ted user groups. I often categorize users
as:

• Not motivated or skilled – These people may not be against the

UAT effort, but they just may not be aware of how to perform UAT
or understand the importance of UAT. These users may lack basic
computer literacy or management support to allow them to partici-
pate in the test. This is most often where surrogate users may be
needed. In addition, the tests may be minimal at this level.

• Somewhat motivated, but lacking skills – At this level you have

a chance to get user involvement but will have to build testing
skills. Tests may range from low to moderately complex.

• Somewhat motivated and skilled – At this level the skills are in

place, but you will have to identify motivating factors and market
those to the prospective testers.

(Continued on Page 7)

This often takes the form of blaming the testers for the
defects, which is like blaming a research scientist for the
results of a correctly performed experiment.

However, let’s say for a moment that people reach agree-
ment that the first hypothesis was wrong and that the sof t-
ware does have defects and needs to be fixed. This may
imply that the software will be delivered late and other
people will be held accountable. Although these cons e-
quences may occur, people need to face reality and cor-
rect the problems instead of focusing on their own agen-
das.

Perhaps this aspect of testing is most closely aligned to
the science we see practiced today. If the research con-
firms the hypothesis, we hear about it. If the research sup-
ports a contrary hypothesis, especially one that goes
against conventional beliefs, those findings may never be
published.

The Longer View

The reason scientific research is performed is to explain
the way observable nature behaves. I would also add that
a great benefit of that knowledge is to improve things we
currently do. It has been said that the thing that distin-
guished Thomas Edison from other inventors was that he
always had a keen sense of how science could help peo-
ple by improving their lives. Edison also had a good sense
of business as well. He knew when to stop research and

build the project.

In testing, the initial goal is to find defects. How-
ever, that is a short-sighted view and fails to
make the best of the resources that have been
expended on creating and fixing the defect. The
longer view of testing is to build ways to prevent
similar problems in the future by improving the
processes used to build the product.

I believe we are far from seeing software tes t-
ing performed as a scientific process, but it
gives us something to think about and relate to,
especially when it comes to evaluating the rigor
and reliability of test results.

Conclusion

There are many points in common between
software testing and traditional science. In fact,
software testing may be closer to a science
than to anything else we can relate. These simi-
larities can be helpful in understanding testing
and explaining testing to others. The similarities
also provide a benchmark of how rigorous a
process we are using in defining and perform-
ing testing processes. Although not every test
will need to be performed at the rigor of scien-
tific research, some tests need to be performed
at that level because of high risk.

Keys to Successful User Acceptance Testing (Continued from Page 3)

The Science of Software Testing
(Continued from Page 5)

“In testing, the
initial goal is to
find defects.
However, that is a
short-sighted view
and fails to make
the best of the
resources that
have been
expended on
creating and fixing
the defect.”

Page Page 66 Volume 5, Issue 5

Tests may range from low to high com-
plexity.

• Very motivated, but lacking skills –

The users in this group are ripe to learn
new things and contribute to the project.
That’s a good combination! Good training
will often complete this picture. At this
level, these people may perform tests in
the minimal to moderately complex
range.

• Very motivated and skilled – These

people are like “instant testers.” Your
training efforts will likely be minimal with
this group and you shouldn’t have to
spend a lot of time motivating them. The
challenge is to use their talents wisely
and not burn them out during the test.
These people can perform a full range of
tests from low to high complexity.

Key #4 – Involve Your Users

Some organizations perform UAT with surro-
gate users – people who take the role of users
but who are not the actual people in the field
that will eventually use the application. The
risk with this is that when the system is de-
ployed, the real users will find problems the
surrogates didn’t consider. I only recommend
this approach when the actual users are un-
available or unwilling to participate in the test.
Even then, the risks are high.

The solution I advise is to at least hold limited
review sessions with the actual users. Com-
plete review sessions which examine items
such as user requirements in detail are even
better. Also, have contingency plans in place
when unexpected problems are found during
UAT. If users are unwilling or unable to partici-
pate in the project, raise this situation as a risk
in the project status reports.

Key #5 – Match the Intensity of the Test to
the Relative Risk and the Skills of the Us-
ers

Not every project requires extensive testing.
However, for those projects that control high
levels of assets or affect personal safely, ex-
tensive validation is required. Users and oth-
ers on the project may question the need for
defined test cases and test scripts, but when
viewed in the light of project and business (or
operational) risks, the time and resources
spent in effective testing are resources well
spent.

To match testing to the risk, perform a risk
assessment that can be quantified and doc u-
mented. Just guessing at the level of risk is
not good enough to explain after a critical fail-
ure why you thought something was a low risk

of failure. The risk assessment should
indicate which system and business
areas are the most exposed to risk.
This allows test resources to be allo-
cated where they will have the greatest
impact to detect defects that may have
severe negative consequences.

Key #6 – Plan the Test in Advance

There are three levels of test planning
(Figure 1):

• The strategic level, which speci-

fies what is to be performed in
testing. The test strategy de-
scribes high-level direction and
objectives, but stops short of
“how” the test will be performed.

• The tactical or logistical level,

which is also considered high-
level, but describes how the test
will be performed. This is basi-
cally the project plan for the test
and is often written to focus on
one phase of testing, such as
unit, integration, system, or UAT.

• The detailed test case or test

script level, which defines in
detail the actions to be per-
formed, the expected results and
the procedures to perform the
tests.

Some people prefer to use informal
and random approaches to testing,
which can find obvious defects but will
often miss the more deeply embedded
defects that are often the most trouble-
some. Another problem with a lack of
test planning is that you never quite
know for sure when you have com-
pleted the test. A test plan contains
measurable objectives and pass/fail
criteria. Detailed test plans also make
it possible for one person to design the
test and for many people to perform it.
Finally, detailed test plans give you a
way to recreate a test if you have to
perform it again.

Once again, the extent of your test
planning effort should be reasonable in
light of the relative risks.

Key #7 – Review Your Test Plans

Test plans can have errors just like
any other type of project documenta-
tion. UAT plans can be reviewed by
the UAT team, a Quality Assurance
(QA) team or facilitator, the project
manager, or any other people with

know ledge of testing and the project.

Conclusion

User acceptance testing is not trivial or easy. UAT can
be one of the most critical and risky types of test on a
project, which means that a great deal of care should
be taken when planning, executing and evaluating the
results of UAT. These keys of UAT have worked for
other organizations in planning and performing UAT
and they can work for yours as well. There are also
more keys of UAT that are out there that perhaps I
can explore in future articles. In the meantime, if you
have any great keys to UAT, let me know at
rrice@riceconsulting.com and I’ll be glad to include
your contribution in a future newsletter.

“Some people prefer to use
informal and random ap-
proaches to testing, which
can find obvious defects but
will often miss the more
deeply embedded defects
that are often the most trou-
blesome.”

Keys to Successful User Acceptance Testing
(Continued from Page 6)

Page Page 77 Volume 5, Issue 5
May 2002—The Software Quality Advisor

Strategic Planning:
“What” is to be done

Tactical/Logistical Planning:
“How” it will be done

Detailed Planning:
Test cases & test

scripts

Figure 1—Levels of test planning detail

“I write down everything I want to
remember. That way, instead of
spending a lot of time trying to re-
member what it is I wrote down, I
spend the time looking for the paper I
wrote it down on.”

Beryl Pfizer

P.O. Box 891284P.O. Box 891284
Oklahoma City, OK 73189Oklahoma City, OK 73189

405405--793793--74497449
405405--793793--7454 Fax7454 Fax
rrice@riceconsulting.comrrice@riceconsulting.com

June 2002 Issue:

How to Start a Bug Collection
by Randall W. Rice

Look for Results, Not Time
by Johanna Rothman

Book Review—Lessons Learned in Software
Testing, Reviewed by Randall W. Rice

Coming to Chicago!

August 14—16, 2002

User-oriented Practices for Delivering Quality
Software

Presented by Process Management Group, Ltd.
(www.pmgltd.com), the Midwest's Premier Provider of IT
Quality and Software Testing Services, and Rice Consult -
ing Services, Inc. (www.riceconsulting.com), a world rec-
ognized leader in Quality and Testing Training.

See details and register at
www.riceconsulting.com/chicagoq3_2002.htm

May, 2002
© 2002, Rice Consulting Services, Inc.

KCQAA Spring Conference

Kansas City, Mo, June 10—12,
2002

Randy will be presenting a three-
day program on User-Oriented
Methods for Software Quality

www.kcqaa.org

User-oriented Practices for De-
livering Quality Software, Chi-
cago, IL, August 14—16

Sponsored by the Process Man-
agement Group, Ltd. And Rice
Consulting Services, Inc.

www.riceconsulting.com

Calendar of Events

"Test everything. Hold onto the good."
I Thessalonians 5:21

We’re on the Web!
www.riceconsulting.com

We hope to see you at one of these
events!

If you have a group of 12 or more
people in your city that would like to
sponsor a training event, contact
Randy Rice at rrice@riceconsulting.
com to find out how to book a spe-
cial presentation.

mailto:rrice@riceconsulting.com
http://www.pmgltd.com
http://www.riceconsulting.com
http://www.riceconsulting.com/chicagoq3_2002.htm
http://www.riceconsulting.com
http://www.kcqaa.org
mailto:rrice@riceconsulting.com

